Loa	O
	\sim

INST	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F03	Date: 25-03-2019
Title:	Course Lab Manual	Page: 1 / 26

Copyright ©2017. cAAS. All rights reserved.

Table of Contents

18CPL27: COMPUTER PROGRAMMING LABORATORY	2
A. LABORATORY INFORMATION	
1. Lab Overview	2
2. Lab Content	3
3. Lab Material	
4. Lab Prerequisites:	
5. General Instructions	
6. Lab Specific Instructions	
B. OBE PARAMETERS	
1. Lab / Course Outcomes	
2. Lab Applications	
3. Articulation Matrix	
4. Mapping Justification	
5. Curricular Gap and Content	
6. Content Beyond Syllabus	
C. COURSE ASSESSMENT	
1. Course Coverage	. 10
2. Continuous Internal Assessment (CIA)	
D. EXPERIMENTS	
Experiment 01: Familiarization with programming environment by taking any simple C- code	
Experiment 02: Develop a program to simulate commercial calculator	
Develop a program to solve simple computational problems using arithmetic expressions and use of each operator leading to simulation of a commercial calculator. (No built-in math function)	
Experiment 03: Develop a program to compute the roots of a quadratic equation by accepting	
coefficients. Print appropriate messages	1/
Develop a program to compute the roots of a quadratic equation by accepting the coefficien	<u>14</u> nts
Print appropriate messages	
Experiment 04 : Develop a program to check for palindrome	
Develop a program to find the reverse of a positive integer and check for palindrome or r	
Display appropriate messages	
Experiment 05: Write a program to read the name of the user, number of units consumed a	
print out the charges	. 16
An electricity board charges the following rates for the use of electricity: for the first 200 units	80
paise per unit: for the next 100 units 90 paise per unit: beyond 300 units Rs 1 per unit. All users	
charged a minimum of Rs. 100 as meter charge. If the total amount is more than Rs 400, then	
additional surcharge of 15% of total amount is charged. Write a program to read the name of t	
user, number of units consumed and print out the charges	
Experiment 06: Introduce 1-D Array manipulation and implement Binary search	
Introduce 1D Array manipulation and implement Binary search	
Experiment 07: Implement using functions to check whether the given number is prime	
Implement using functions to check whether the given number is prime and display appropri	
messages. (No built-in math function) Experiment 08 : Develop a program to implement Matrix multiplication	
Develop a program to introduce 2D Array manipulation and implement Matrix multiplication a	
ensure the rules of multiplication are checked	20
Experiment 09 : Develop a Program to compute Sin(x) using Taylor series approximation	
Develop a Program to compute Sin(x) using Taylor series approximation. Compare your result w	
the built- in Library function. Print both the results with appropriate messages	
Experiment 10 : Write functions to implement string operations	
Write functions to implement string operations such as compare, concatenate, string leng	 αth.
Convince the parameter passing techniques	
Experiment 11: Develop a program to sort the given set of N numbers using Bubble sort	23
Develop a program to sort the given set of N numbers using Bubble sort	

Logo

INST	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F03	Date: 25-03-2019
Title:	Course Lab Manual	Page: 2 / 26

Copyright ©2017. cAAS. All rights reserved.

Note: Remove "Table of Content" before including in CP Book

18CPL27: COMPUTER PROGRAMMING LABORATORY

A. LABORATORY INFORMATION

1. Lab Overview

Degree:	BE	Program:	IS
Year / Semester :	1/2	Academic Year:	2018-19
Course Title:	Computer Programming Laboratory	Course Code:	18CPL17
Credit / L-T-P:	4 / 0-0-2	SEE Duration:	180 Minutes
Total Contact Hours:	30 Hrs	SEE Marks:	60 Marks
CIA Marks:	40	Assignment	1 / Experiment

CS

	Logo	INST		Teaching Process		
		Doc Code	e: SKIT.Ph5b1.F03		D	ate: 25-03-2019
		Title:	Course Lab Manual		P	age: 3 / 26
	Copyright ©2017. cA	AS. All rights rese	rved.			
		Author	OKECHILD		Cian	D+ .

Course Plan Author:	LOKESH H D	Sign	Dt:
Checked By:		Sign	Dt:

2. Lab Content

Unit	Title of the Experiments	Lab Hours	Concept	Blooms Level
1	Familiarization with programming environment, concept of naming the program files, storing, compilation, execution and debugging. Taking any simple C- code		Execution of simple C Code	L3 Apply
	PART-A			
2	Develop a program to solve simple computational problems using arithmetic expressions and use of each operator leading to simulation of a commercial calculator. (No built-in math function)		Arithmeti c Operators	L3 Apply
3	Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages.	2	Decision- making statemen ts	L3 Apply
4	Develop a program to find the reverse of a positive integer and check for palindrome or not. Display appropriate messages	2	Looping statemen ts	L3 Apply
5	An electricity board charges the following rates for the use of electricity: for the first 200 units 80 paise per unit: for the next 100 units 90 paise per unit: beyond 300 units Rs 1 per unit. All users are charged a minimum of Rs. 100 as meter charge. If the total amount is more than Rs 400, then an additional surcharge of 15% of total amount is charged. Write a program to read the name of the user, number of units consumed and print out the charges		Decision- making statemen ts	L3 Apply
6	Introduce 1D Array manipulation and implement Binary search	2	Linear represent ation of 1- D arrays	L3 Apply
7	Implement using functions to check whether the given number is prime and display appropriate messages. (No built-in math function)		Modular represent ation	L3 Apply
	PART-B			
	Develop a program to introduce 2D Array manipulation and implement Matrix multiplication and ensure the rules of multiplication are checked.		Linear represent ation of 2-D arrays	L4 Analyze
9	Develop a Program to compute Sin(x) using Taylor series approximation. Compare your result with the built- in Library function. Print both the results with appropriate messages.	_	Modular Represen tation	L4 Analyze
10	Write functions to implement string operations such as compare, concatenate, string length. Convince the parameter passing techniques.	2	String operation s	L4 Analyze
11	Develop a program to sort the given set of N numbers using Bubble sort.	2	Data arrangem ent	L3 Apply
12	Develop a program to find the square root of a given number N and execute for all possible inputs with appropriate messages. Note: Don't use library function sqrt(n)	2	Modular program ming	L3 Apply
13	Implement structures to read, write, compute average- marks and the students scoring above and below the average marks for a class of N students.		Derived datatype	L3 Apply

Logo INST		INST	Teaching Process		Rev No.: 1.0		
Doc Code:		Doc Code:	SKIT.Ph5b1.F03		Date: 25-03-2019		
		Title:	Course Lab Manual Page		Page:	e: 4 / 26	
		AAS. All rights reserved					
			n using pointers to compute the sum, mean and		Address	L3	
	standard deviation of all elements stored in an array of n real				of	Apply	
	numbers				memory		
					location		
15 I	15 Implement Recursive functions for Binary to Decimal Conversion		2	Self-	L3		
	•		·		invoking	Apply	
					functions	-	

3. Lab Material

Unit	Details	Available
1	Text books	
	1. E.Balaguruswamy,Programming in ANSI C, 7 th Edition,Tata McGraw-Hill	Not
		Available(requireme
		nt given)
	2. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language,	Available
	Prentice Hall of India.	
2	Reference books	
	1. Sumitabha Das, Computer Fundamentals & C Programming, Mc Graw Hill	Not
	Education.	Available(requireme
	2. Gary J Bronson, ANSI C Programming, 4 th Edition, Ceneage Learning.	nt given)
	3. Vikas Gupta: Computer Concepts and C Programming, Dreamtech Press	
	2013.	
	4. R S Bichkar, Programming with C, University Press, 2012.	
	5. V Rajaraman: Computer Programming in C, PHI, 2013.	
	6. Basavaraj S. Anami, Shanmukhappa A Angadi, Sunilkumar S. Manvi,	
	Computer Concepts and C Programming: A Holistic Approach to Learning C,	
_	Second edition, PHI India, 2010.	A 11 1 1
3	Others (Web, Video, Simulation, Notes etc.)	Available
	https://www.tutorialspoint.com/PPS	
	https://vtuplanet.com/notes	
	https;//www.khanacademy.com	

4. Lab Prerequisites:

_	-	Base Course:		-	-
SNo	Course	Course Name	Topic / Description	Sem	Remarks
	Code				
1	18CPL17	Computer	Familiarize with fundamentals o	f 1	Required for
		Programming	computer concepts		Experiment 1
		Laboratory			

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

5. General Instructions

SNo	Instructions	Remarks
1	Observation book and Lab record are compulsory.	
2	Students should report to the concerned lab as per the time table.	
	After completion of the program, certification of the concerned staff incharge in the observation book is necessary.	
	Student should bring a notebook of 100 pages and should enter the readings /observations into the notebook while performing the experiment.	
	The record of observations along with the detailed experimental procedure of the experiment in the Immediate last session should be submitted and certified staff member in-charge.	
6	Should attempt all problems / assignments given in the list session wise.	

CS

Logo	INST	Teaching Process	Rev No.: 1.0
· ·	Doc Code:	SKIT.Ph5b1.F03	Date: 25-03-2019
	Title:	Course Lab Manual	Page: 5 / 26

		Title:	Course Lab Manual	Page: 5 / 26
Copyrigl	nt ©2017. cA			
7		create a separate directory to store all the programs, so		
	that no	obody else ca	n read or copy.	
8			ent is completed, student should save the experiment	
	with re	elevant filenar	nes and exit from the Turbo C IDE compiler.	
9	Any d	lamage of the	e equipment of the computer system will be viewed	
	seriou	sly either by	putting penalty or by dismissing the total group of	
	studer	nts from the la	ab for the semester/year	
10	Comp	leted lab ass	signments should be submitted in the form of a Lab	
	Recor	d in which yo	u have to write the algorithm, Flowchart, program code	
	along	with commer	nts and output for various inputs given	

6. Lab Specific Instructions

SNo	Specific Instructions	Remarks
1	Start windows Operating system	
2	Open the Turbo C text editor screen in Windows	
3	Select new file	
4	Write the program	
5	Save the program with ". c" extension	
6	Compile the program using Alt + F9	
7	Press Ctrl + F9 to Run to execute the Program	
8	Press Alt+F5 to view the output of the program at the output screen	

B. OBE PARAMETERS

1. Lab / Course Outcomes

#	COs	Teach.	Concept	Instr	Assessment	
		Hours		Method	Method	Level
1	Develop execution of C code using Turbo C compiler		Execution of simple C Code	Demons trate	Viva & presentation	L3 Apply
	PART-A					
2	Develop a C code using Conditional branching statements		Decision- making statements	Demons trate	Viva & presentation	L3 Apply
3	Develop a C code using Conditional branching statements		Decision- making statements	Demons trate	Viva & presentation	L3 Apply
4	Develop a C code using Repetitive statements		Looping statements	Simulati on	Viva & presentation	L3 Apply
5	Develop a C code using Conditional branching statements		Decision- making statements	Tutorial	Viva & presentation	L3 Apply
6	Develop a C code using Arrays		Linear representatio n of 1-D arrays	Tutorial	Viva & presentation	L3 Apply
7	Develop a C code using Repetitive statements	02	Modular representatio n	Demons trate	Viva & presentation	L3 Apply
	PART-B					
8	Develop a C code using Arrays	02	Linear representatio n of 2-D	Demons trate	Viva & presentation	L4 Analyze

Logo	INST	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03	Date: 25-03-2019
	Title:	Course Lab Manual	Page: 6 / 26
onwright @2017 c	AS All rights recogned		-

-	Total	30	-	-	-	-
15	Develop a C code using recursion	02	Self- invoking functions		Viva & presentation	L3 Apply
14	Develop a C code using pointers	02	Address of memory location	Demons trate	Viva & presentation	L3 Apply
13	Develop a C code using structures	02	Derived datatype	Demons trate	Viva & presentation	L3 Apply
12	Develop a C code using Repetitive statements	02	Modular programming	Demons trate	Viva & presentation	L3 Apply
11	Develop a C code using Arrays	02	Data arrangement	Demons trate	Viva & presentation	L3 Apply
10	Develop a C code using String manipulation functions	02	String operations	Demons trate	Viva & presentation	L4 Analyze
9	Develop a C code using Repetitive statements	02		Demons trate	Viva & presentation	L4 Analyze
Copyright @2017	CAAS, All rights reserved.		arrays			

Note: Identify a max of 2 Concepts per unit. Write 1 CO per concept.

2. Lab Applications

SNo	Application Area	CO	Level
1	Computer Science	CO1	L3
2	banking sectors	CO2	L3
3	Theory of Algebra	CO2	L3
4	In Number theory ,DNA sequences	CO3	L3
5	Electricity department	CO2	L3
6	Applications of the binary search algorithm include sets,, trees dictionaries, bags,	CO4	L3
	bag trees, bag dictionaries, hash sets, hash tables, maps		
7	Theory of Algebra	CO3	L3
8	Computer Graphics	CO4	L4
9	Power flow analysis of electrical power systems	CO3	L4
10	Database Management system	CO5	L4
11	Bubble sort is used in programming TV remote to sort channels on the basis of	CO4	L3
	longer viewing time		
12	Mathematical statistics	CO3	L3
13	Computer Architecture	CO6	L3
14	Memory allocation	CO7	L3
15	Computer Technology for encoding and decoding	CO8	L3

Note: Write 1 or 2 applications per CO.

3. Articulation Matrix

(CO - PO MAPPING)

_	Course Outcomes				Program Outcomes														
#			COs				PO1	PO2	РО	PO ₁	PO1	PO1	Level						
									3	4	5	6	7	8	9	0	1	2	
18CPL27.1	Develop	exe	cution	of	С	code	1	3	3		3								L3
	using Turl	оо С	compi	ler															
18CPL27.2	Develop	а	С	code	Э	using	1	3	3		3								L3

CS

Logo	INST		Teaching Process								Rev No.: 1.0				
_	Doc Code:	SKIT.Ph5b1.F03								Date: 25-03-2019					2019
	Title:	ourse Lab Manual									Page: 7 / 26				
Copyright ©2017. cA	AS. All rights reserved.														
	Conditional b	ranching statements													
18CPL27.3	Develop a Conditional b	1	3	3		3								L3	
18CPL27.4	Develop a Costatements	code using Repetitive	1	3	3		3								L3
18CPL27.5	Develop a Conditional b	C code using ranching statements	' I	3	3		3								L3
18CPL27.6	Develop a C	code using Arrays	1	3	3		3								L3
18CPL27.7	Develop a Costatements	code using Repetitive	1	3	3		3								L3
18CPL27.8	Develop a C	code using Arrays	1	3	3		3								L4
18CPL27.9	Develop a C statements	code using Repetitive	1	3	3		3								L4
18CPL27.10	Develop a (manipulation	C code using String functions	1	3	3		3								L4
18CPL27.11	Develop a C	code using Arrays	1	3	3		3								L3
18CPL27.12	Develop a Costatements	code using Repetitive	1	3	3		3								L3
18CPL27.13	Develop a C	code using structures	1	3	3		3								L3
18CPL27.14	Develop a C	code using pointers	1	3	3		3								L3
18CPL27.15	Develop a C	1	3	3		3								L3	
18CPL27															

Note: Mention the mapping strength as 1, 2, or 3

4. Mapping Justification

Map	ping	Justification	
			Mapping Level
СО	РО	-	-
CO1		Knowledge of C compiler is required for execution by executing a sample program	1
	PO2	analyzing the problem requires the knowledge of basic concepts of C program	3
	PO3	design and develop a solution for a problem	3
	PO4	No investigation & interpretation content. No mapping. Learning is at the basic level. Attainment will be Zero, if mapping done.	-
		requires the knowledge of C compiler for program execution	3
	P06	No social, cultural issues. No mapping	-
	P07	No impact on Environment and sustainability. No mapping	-
	P08	No team work or lead for the ethical work. No mapping	-
	PO9	No team work or lead for the ethical work. No mapping	-
		No usage for communication. No mapping.	-
	PO11	No project management and finance. No mapping.	-
		No mapping as there is only understanding	-
CO2		Knowledge of arithmetic operations is required	1
	PO2	analyzing the problem requires the knowledge of basic concepts of C program	3
	PO3	design and develop a solution for a problem	3
	PO4	No investigation & interpretation content. No mapping. Learning is at the basic level. Attainment will be Zero, if mapping done.	-
	PO5	requires the knowledge of C compiler for program execution.	3
		No social, cultural issues. No mapping	-
	PO7	No impact on Environment and sustainability. No mapping	-
	P08	No team work or lead for the ethical work. No mapping	-
	PO9	No team work or lead for the ethical work. No mapping	-

l c	ogo	INST	Teaching Process	Rev No.: 1.0
LC	go		KIT.Ph5b1.Fo3	Date: 25-03-2019
			Course Lab Manual	Page: 8 / 26
Copyrigh		AAS. All rights reserved.		
			ommunication. No mapping.	-
			agement and finance. No mapping.	-
		No mapping as	-	
CO3			Conditional branching statements is required.	1
	PO2	analyzing the p statements	roblem requires the knowledge of Conditional branching	3
	PO ₃		velop a solution for a problem	3
		No investigation	n & interpretation content. No mapping. Learning is at the	-
	DOc		ainment will be Zero, if mapping done. owledge of C compiler for program execution	2
			ral issues. No mapping	3
			nvironment and sustainability. No mapping	<u>-</u>
			or lead for the ethical work. No mapping	_
			or lead for the ethical work. No mapping	_
			ommunication. No mapping.	_
			nagement and finance. No mapping.	_
			there is only understanding	_
CO ₄			arrays is required for execution.	1
004			roblem requires the knowledge of arrays concepts	3
			relop a solution for a problem	3
		No investigation	n & interpretation content. No mapping. Learning is at the	-
	DOF		ainment will be Zero, if mapping done.	2
			owledge of C compiler for program execution	3
			ral issues. No mapping	-
			invironment and sustainability. No mapping	-
			or lead for the ethical work. No mapping or lead for the ethical work. No mapping	-
			on tead for the ethical work, no mapping ommunication. No mapping.	-
			nagement and finance. No mapping.	_
			there is only understanding	_
CO ₅			string concepts is required	1
005			roblem requires the knowledge of string handling	3
		concepts		3
			relop a solution for a problem	3
	PO4		n & interpretation content. No mapping. Learning is at the ainment will be Zero, if mapping done.	-
	PO5		owledge of C compiler for program execution	3
		•	iral issues. No mapping	-
			invironment and sustainability. No mapping	-
			or lead for the ethical work. No mapping	-
			or lead for the ethical work. No mapping	-
			ommunication. No mapping.	-
	PO11	No project man	nagement and finance. No mapping.	-
			there is only understanding	-
CO6	PO1	Knowledge of	structures is required.	1
			roblem requires the knowledge of structure concepts	3
			relop a solution for a problem	3
	PO4		n & interpretation content. No mapping. Learning is at the ainment will be Zero, if mapping done.	-
	P05		nowledge of C compiler for program execution	3
		•	ral issues. No mapping	-
			invironment and sustainability. No mapping	_
		•	or lead for the ethical work. No mapping	-
			or lead for the ethical work. No mapping	-
			., .	

۱۰	ogo	INST	Teaching Process	Rev No.: 1.0
LC	<i>y</i> go		SKIT.Ph5b1.F03	Date: 25-03-2019
		Title:	Course Lab Manual	Page: 9 / 26
Copyrigh		AAS. All rights reserved		r age. 97 20
	PO10	No usage for	communication. No mapping.	-
	PO11	No project ma	anagement and finance. No mapping.	-
	PO12	No mapping a	s there is only understanding	-
CO7	PO1	Knowledge of	pointers is required.	1
	PO2	Analyzing the	problem requires the knowledge of pointers	3
	PO3	Design and de	evelop a solution for a problem	3
			on & interpretation content. No mapping. Learning is at the	-
		basic level. At	tainment will be Zero, if mapping done.	
			knowledge of C compiler for program execution	3
	P06	No social, cult	cural issues. No mapping	-
	PO7	No impact on	Environment and sustainability. No mapping	-
	PO8	No team wor	k or lead for the ethical work. No mapping	-
	P09	No team wor	k or lead for the ethical work. No mapping	-
	PO10	No usage for	communication. No mapping.	-
	PO11	No project ma	anagement and finance. No mapping.	-
	PO12	No mapping a	s there is only understanding	-
CO8	PO1	Knowledge of	recursive function is required.	1
	PO2	analyzing the	problem requires the knowledge of recursion concepts	3
	PO3	design and de	evelop a solution for a problem	3
			on & interpretation content. No mapping. Learning is at the tainment will be Zero, if mapping done.	-
	PO5	requires the k	nowledge of C compiler for program execution	3
	P06	No social, cult	cural issues. No mapping	-
	PO7	No impact on	Environment and sustainability. No mapping	-
			k or lead for the ethical work. No mapping	-
			k or lead for the ethical work. No mapping	-
			communication. No mapping.	-
			anagement and finance. No mapping.	-
			s there is only understanding	-

Note: Write justification for each CO-PO mapping.

5. Curricular Gap and Content

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

Note: Write Gap topics from A.4 and add others also.

6. Content Beyond Syllabus

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					
6					
7					
8					
9					

CS

Lo	go	INST		Te	Rev No.: 1.0		
Doc Code: SKIT.Ph5b1.F03				Ph5b1.F03		Date: 25-03-2019	
		Title:	Cour	se Lab Manual	Page: 10 / 26		
Copyright	©2017. c/	AAS. All rights reserved	d.				
10							
11							
12							
13							
14							
15							
		·					

Note: Anything not covered above is included here.

C. COURSE ASSESSMENT

1. Course Coverage

Unit	Title	Teachi							CO	Levels	
		ng Hours	CIA-1	CIA-2	CIA-3	Asg-1	Asg-2	Asg-3	SEE		
1	Familiarization with programming environment, concept of naming the program files, storing, compilation, execution and debugging. Taking any simple C-code		1	-	-	-	-	-	1	CO1	L3
	PART-A										
	Develop a program to solve simple computational problems using arithmetic expressions and use of each operator leading to simulation of a commercial calculator. (No built-in math function)		1	-	-	-	-	-	1	CO2	L3
	Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages.		1	-	-	-	-	-	1	CO2	L3
4	Develop a program to find the reverse of a positive integer and check for palindrome or not. Display appropriate messages		1	-	-	-	-	-	1	CO3	L3
5	An electricity board charges the following rates for the use of electricity: for the first 200 units 80 paise per unit: for the next 100 units 90 paise per unit: beyond 300 units Rs 1 per unit. All users are charged a minimum of Rs. 100 as meter charge. If the total amount is more than Rs 400, then an additional surcharge of 15% of total amount is charged. Write a program to read the name of the user, number of units consumed and print out the charges		1	-	-	-	-	-	1	CO2	L3
6	Introduce 1D Array manipulation and implement Binary search	02	-	1	-	-	-	-	1	CO4	L3
7	Implement using functions to check whether the given number		-	1	-	-	-	-	1	CO3	L3

Logo	INST	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03	Date: 25-03-2019
	Title:	Course Lab Manual	Page: 11 / 26

	Title: Course Lab Ma	ınual							Page	2: 11 / 20	o
Copyrig	ht ©2017. cAAS. All rights reserved. is prime and display appropriate										
	messages. (No built-in math function)										
	PART-B										
										00.	
8	Develop a program to introduce	02	_	1	-	-	_	_	1	CO ₄	L4
	2D Array manipulation and										
	implement Matrix multiplication										
	and ensure the rules of										
_	multiplication are checked.									000	
9	Develop a Program to compute	02	_	1	-	-	_	_	1	CO3	L4
	Sin(x) using Taylor series										
	approximation. Compare your										
	result with the built- in Library function. Print both the results with										
10	appropriate messages. Write functions to implement	02		1					1	CO5	
10	string operations such as compare,	02	_	1	_	-	-	_	1	005	L4
	concatenate, string length.										
	Convince the parameter passing										
	techniques. Write functions to										
	implement string operations such										
	as compare, concatenate, string										
	length. Convince the parameter										
	passing techniques.										
11	Develop a program to sort the	02	_	_	1	_	-	-	1	CO ₄	L3
	given set of N numbers using	-			_				_		_5
	Bubble sort.										
12	Develop a program to find the	02	_	-	1	-	-	-	1	CO3	L3
	square root of a given number N										Ū
	and execute for all possible inputs										
	with appropriate messages. Note:										
	Don't use library function sqrt(n)										
13	Implement structures to read,	02	-	-	1	-	-	-	1	CO6	L3
	write, compute average- marks										
	and the students scoring above										
	and below the average marks for a										
	class of N students.										
14	Develop a program using pointers	02	-	-	1	-	-	-	1	CO7	L3
	to compute the sum, mean and										
	standard deviation of all elements										
	stored in an array of n real										
	numbers										
15	Implement Recursive functions for	02	-	-	1	-	-	-	1	CO8	L3
	Binary to Decimal Conversion								_		
	Total	30	5	5	5	-	-	-	15	-	-
Note	e: Write CO based on the theory cour	se.									

2. Continuous Internal Assessment (CIA)

Evaluation	Weightage in Marks	CO	Levels
CIA Exam – 1	40	CO1, CO2, CO3	L3
CIA Exam – 2	40	CO3, CO4, CO5,	L3,L4
CIA Exam – 3	40	CO3,CO4,CO6,CO7, CO8	L3
Assignment - 1			
Assignment - 2			

Logo	INST	Teac	Rev No.: 1.0						
	Doc Code:	SKIT.Ph5b1.F03		Date: 25-03-2019					
	Title:	Course Lab Manual		Page: 12 / 26					
Copyright ©2017. c/	Copyright ©2017. cAAS. All rights reserved.								
Assignment	I - 3								
Seminar - 1									
Seminar - 2									
Seminar - 3									
Other Activi	ties – define –	-							
Slip test									
Final C	IA Marks	40	-	-					

Description SNo Marks Observation and Weekly Laboratory Activities 05 Marks 20 Marks for each Expt Record Writing Internal Exam Assessment 15 Marks 3 Internal Assessment 40 Marks 4 SEE 60Marks 5 Total 100 Marks

D. EXPERIMENTS

Experiment 01: Familiarization with programming environment by taking any simple C-code.

	Experiment No.:	1 Marks		Date	,	Date			
	ZAPOTITIONE 140.	Indika		Planned		Conducted			
1	Title	Familiarization program files, simple C- code	storing, comp			oncept of			
2	Course Outcomes	Develop execut	evelop execution of C code using Turbo C compiler						
3	Aim	Exercise on sim	ple C program	n using Turb	o C compile	ſ			
4	Material / Equipment Required	Lab Manual							
	Principle, Concept	Theory- Basic s Concept-writing			program				
6	Procedure, Program, Activity, Algorithm, Pseudo Code		program	errors					
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph								
	Observation Table, Look-up Table, Output	• this is th	ne to SKIT coll ne first prograr						
	Sample Calculations	-							
	Graphs, Outputs	-							
	Results & Analysis	-							
	Application Areas	Computer Scier	nce						
	Remarks	-							
14	Faculty Signature with Date	-							

CS

Logo	INST	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03	Date: 25-03-2019
	Title:	Course Lab Manual	Page: 13 / 26
أ المالية	A.C. A.H. of sale to a second		

Title: Course Lab Manual Copyright ©2017. cAAS. All rights reserved. Experiment 02: Develop a program to simulate commercial calculator

-	Experiment No.:	2	Marks		Date Planned		Date Conducted			
1	Title	expre		use of each	simple com operator le		roblems using arithmetic rulation of a commercial			
2	Course Outcomes		Develop a C code using Conditional branching statements							
_	Aim			rithmetic ope	erations usin	g operators v	vithout built-in functions			
4	Material / Equipment Required	Lab	ab Manual							
5	Theory, Formula Principle, Concept			ı-making stat	ements with	out using bu	ilt-in function			
6	Procedure, Program, Activity Algorithm, Pseudo Code	Step	if(op=='+') else if(op= else if(op= else if(op= if(b!=0) re else { printf("c exit(o); } } else {	p he arithmetic res=a+b; res=a-b; res=a*b; res=a*b;	o\n");	on variables a	ı,b]			
		Step	4: [print the r print a,op, 5: [finished]							
7	Block, Circuit Model Diagram Reaction Equation Expected Graph		6: stop							
8	Observation Table Look-up Table Output	5+6=1 Enter 6-5=1 Enter 5*6=3 Enter 6/2=3	the express the express the express o the express	ion ion ion						

CS

L	Logo NST		Teaching Process	Rev No.: 1.0
	Doc Code:		SKIT.Ph5b1.F03	Date: 25-03-2019
		Title:	Course Lab Manual	Page: 14 / 26
Copyri	ght ©2017. c	AAS. All rights reserve	ed.	·
			6@2	
			Illegal operator	
	Sample	?	-	
	Calcula	tions		
10	Graphs,	Outputs	-	
11	Results	& Analysis	-	
12	Applica	tion Areas	banking sectors	
13	Remark	(S		
14	Faculty	Signature		
	with Da	te		

Experiment 03: Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages.

-	Experiment No.:	3	Marks		Date Planned		ate ducted	
1	Title					of a quadratic equ	uation by accepting	
	Aim	То сс	evelop a C code using Conditional branching statements compute quadratic equation through coefficients ab Manual					
	Equipment Required							
	Principle, Concept			-making state	ements in qu	adratic equation		
6	Procedure, Program, Activity, Algorithm, Pseudo Code	Step2	g: [Find discri D=b*b-4*a 4: [Check the If (D==0) pr r1: r2 pr end if Else if(d>0 pr r1: r2 pr end if	b,c for non ze iminate] tc nature] rint' roots are =(-b)/(2*a) =(-b)/(2*a) int r1,r2	real & equal' real & distinct (2*a) ((2*a)			
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph							
8	Observation Table, Look-up Table,			non-zero coe	efficient: 1 0 1			

CS

INST	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F03	Date: 25-03-2019
Title:	Course Lab Manual	Page: 15 / 26

Copyri	ght ©2017. cAAS. All rights reserv	ed.
	Output	Invalid Input
		case 2:
		enter the non-zero coefficient: 123
		complex roots
		root1=-1.000000+i1.414214
		root2=-1.000000-i1.414214
		case 3:
		enter the non-zero coefficient: 5 5 1
		real roots
		root1=-0.276393
		root2=-0.723607
		case 4:
		enter the non-zero coefficient: 1 2 1
		equal roots
		root1=-1.000000
		root2=-1.000000
9	Sample	
	Calculations	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	Theory of Algebra
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 04: Develop a program to check for palindrome.

-	Experiment No.:	4	Marks		Date		Date	
					Planned		Conducted	
1	Title	Deve	elop a progr	ram to find	the reverse	of a positive	e integer an	d check for
		palin	drome or no	t. Display ap _l	propriate me	ssages		
2	Course Outcomes	Deve	elop a C code	e using Repe	titive statem	ents		
3	Aim	To re	•	itive integer	and check w	hether a giv	en number is	palindrome
4		Lab I	Manual					
	Equipment							
	Required							
5		To a	oply Looping	g constructs				
_	Principle, Concept	01						
6			1: [start]					
			2: [read no]					
	Algorithm, Pseudo		Read n					
	Code	Step	_	erse o and n	to m)			
		<u> </u>	reverse=0	•				
		Step	4: [reverse th					
			while(n≠0	-				
				git=n%10				
			• • • • • • • • • • • • • • • • • • • •	=n/10				
				everse=revers	se*10+digit			
			end while					
		Step			ed and origin	ial numbers	are samel	
			if(m==reve					
			•	rint "number	is a palindro	ome"		
			else					

Logo	INST	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03	Date: 25-03-2019
	Title:	Course Lab Manual	Page: 16 / 26

Copyright ©2017. cAAS. All rights reserved. print "number is not a palindrome" end if Step6: [finished] Stop 7 Block, Circuit, Model Diagram, Reaction Equation, Expected Graph 8 Observation Table, case 1: Look-up Table, enter the number: Output 1221 number is palindrome case 2 : enter the number: 1234 number is not palindrome 9 Sample Calculations 10 Graphs, Outputs 11 Results & Analysis 12 Application Areas In Number theory ,DNA sequences 13 Remarks 14 Faculty Signature with Date

Experiment 05: Write a program to read the name of the user, number of units consumed and print out the charges.

-	Experiment No.:	5	Marks		Date		Date		
					Planned		Conducted		
1							or the use of		
		1		•	•		t 100 units 9	•	
							harged a mir		
							Rs 400, then a		
							rogram to rea	ad the name	
				er of units co		<u> </u>			
				using Condi					
3	Aim					units consu	umed and pr	int the units	
			umed using i Manual	f-else staten	nents				
4	Equipment /	Labi	Manual						
	Required								
5		To Co	ompute the e	electricity uni	ts consumpt	ion usina If-e	else statemei	nts	
	Principle, Concept				1	3			
6	Procedure,	Step	1: [start]						
	Program, Activity,								
	Algorithm, Pseudo		read name	,					
	Code	Step		he operation		sumedl			
			IT(UNIT>=0 &	k& unit<=200)					
			ı Rs₌unit	*0.80·					
			Rs=unit*0.80; Rs=Rs+100:						
]						
			else if(unit<=300 && unit>200)						
			{						
			R	s=unit*0.90;					

CS

 Logo
 INST
 Teaching Process
 Rev No.: 1.0

 Doc Code:
 SKIT.Ph5b1.Fo3
 Date: 25-03-2019

Page: 17 / 26

Course Lab Manual

Title:

Copyright ©2017. cAAS. All rights reserved Rs=Rs+100: else if(unit>300) Rs=unit*1.00; Rs=Rs+100; if(Rs>400) Rs=Rs+(0.15*Rs); Step 4: [print the result] print name, unit, Rs Step 5: [finished] step 6: [stop] 7 Block, Circuit, Model Diagram, Reaction Equation, Expected Graph 8 Observation Table, 1. Look-up Table, enter the customer name: Sandhya enter the number of units consumed:260 Output the customer name is:divya number of units consumed is 260 total cost(Rs) is 334.000000 enter the customer name: sowmya enter the number of units consumed:180 the customer name is: sowmya number of units consumed is 180 total cost(Rs) is 244.000000 enter the customer name: Divya enter the number of units consumed:380 the customer name is: sandhya number of units consumed is 380 total cost(Rs) is 552.000000 9 Sample Calculations 10 Graphs, Outputs 11 Results & Analysis 12 Application Areas Electricity department 13 Remarks 14 Faculty Signature with Date

Experiment 06: Introduce 1-D Array manipulation and implement Binary search.

Experiment No.:	6	Marks		Date	Date	
				Planned	Conducted	
Title	Introduce 1D Array manipulation and implement Binary search				ment Binary search	
Course Outcomes	Deve	lop a C code	using Arrays	5		
Aim	To ap	To apply 1-Dimensional array manipulation and implement Binary search				
Material /	Lab N	Manual				
Equipment						
Required						
	Linea	ar representa	tion of 1-D ar	rays		
	Title Course Outcomes Aim Material / Equipment Required	Title Introd Course Outcomes Deve Aim To ap Material / Lab N Equipment Required Theory, Formula, Linea	Title Introduce 1D Array Course Outcomes Develop a C code Aim To apply 1-Dimen Material /Lab Manual Equipment Required Theory, Formula, Linear representa	Title Introduce 1D Array manipulation Course Outcomes Develop a C code using Arrays Aim To apply 1-Dimensional array of Material / Lab Manual Equipment Required Theory, Formula, Linear representation of 1-D ar	Title Introduce 1D Array manipulation and imple Course Outcomes Develop a C code using Arrays Aim To apply 1-Dimensional array manipulation Material / Lab Manual Equipment Required Theory, Formula, Linear representation of 1-D arrays	

CS

Logo

INST	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F03	Date: 25-03-2019
Title:	Course Lab Manual	Page: 18 / 26

Copyright ©2017. cAAS. All rights reserved. Step 1: [start] 6 Procedure, Program, Activity, Step 2: [read the input] Algorithm, Pseudo read n Code Step 3: [read the array elements] for(i=0;i<n;i++) read (arr[i]) Step 4:[enter the number to be searched] Read num Step 5: [search for key element through array] low=0; high=n-1; while(low<=high) mid=(low+high)/2; if(arr[mid]==num) print(num is present in the array at position mid+1); getch(); exit(o); else if(arr[mid]>num) high=mid-1; else low=mid+1; print(num does not exist in the array); Step 6: [finished] stop 7 Block, Circuit, Model Diagram, Reaction Equation, Expected Graph 8 Observation Table, enter the number of elements in the array in ascending order: Look-up Table, 5 Output enter the elements: 12 23 34 45 56 enter the number that has to be searched: 34 34 is present in the array at position= 3 9 Sample Calculations 10 Graphs, Outputs 11 Results & Analysis 12 Application Areas Applications of the binary search algorithm include sets,, trees dictionaries, bags, bag trees, bag dictionaries, hash sets, hash tables, maps 13 Remarks 14 Faculty Signature with Date

Logo	INST	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03	Date: 25-03-2019
	Title:	Course Lab Manual	Page: 19 / 26

Copyright ©2017. cAAS. All rights reserved.

Experiment 07: Implement using functions to check whether the given number is prime.

	Experiment No.:	7	Marks		Date	une givern	Date		
-	Experiment No		Marks		Planned		Conducte	d	
1	Title	Imple	ement using	g functions	to check w	hether the	given num	nber is prime	
		and o	nd display appropriate messages. (No built-in math function)						
2	Course Outcomes	Deve	lop a C code	using Repet	itive stateme	ents			
3	Aim			er the giver	number is	prime with	nout using	built-in math	
4	Material /	funct	ion 1anual						
	Equipment	Labi	laridat						
	Required								
	Theory, Formula, Principle, Concept			tion of 1-D ar	rays				
	Procedure,		1: [start]						
	Program, Activity, Algorithm, Pseudo Code		2: [read the ii read n	nputl					
		Step	3:Ito check w int isprime	hether the n (int m)	umber is prii	me or notl			
		{	int v i main	may li					
			int x,i,min, if(m==0)	max,j;					
			{						
				intf("enter x\i	n");				
				anf("%d",&x); ^(i=2;i<=x-1;i++)					
				{					
					if(x%i==0)				
					retu	rn(0);			
					1				
				1	}				
				return(1);					
			}	, ,					
		Sten	p= isprime	·(n) orime numbe	rl				
		Stop.		rint(n is prime					
			else						
			print(n is r	iot prime)					
		Step	6: [finished]						
		·	stop						
	Block, Circuit, Model Diagram,								
	Reaction Equation,								
	Expected Graph								
	Observation Table	Case	1:						
	Look-up Table, Output	onto	1 for conora	tina prima ::-	ımboro till NI				
	Jaipai			ting prime nu whether the g		er is prime or	not		
		1				•			
				n value and	the maximur	n value			
		10	20						

CS

Logo

INST	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F03	Date: 25-03-2019
Title:	Course Lab Manual	Page: 20 / 26

		1.00	
Copyri	ght ©2017. cAAS. All rights reserv		
		the list of prime no's are :	
		11 13 17 19	
		Case 2:	
		enter 1 for generating prime numbers till N	
		enter 0 to check whether the given number is prime or not	
		0	
		enter the number	
		5	
		it is a prime number	
		Case 3:	
		enter 1 for generating prime numbers till N	
		enter 0 to check whether the given number is prime or not	
		0	
		enter the number	
		6	
		it is not a prime number	
9	Sample		
	Calculations		
10	Graphs, Outputs		
11	Results & Analysis		
12	Application Areas	Theory of Algebra	
13	Remarks		
14	Faculty Signature		
	with Date		

Experiment 08: Develop a program to implement Matrix multiplication.

-	Experiment No.:	8	Marks		Date Planned	Date Conducted	
1	Title				uce 2D Array rules of multip	n and imple	ment Matrix
2	Course Outcomes	Deve	lop a C code	using Arrays	5		
3	Aim	To in	plement ma	trix multiplic	ation		
4	Equipment Required		Manual				
5	Theory, Formula, Principle, Concept	Linea	ır representa	tion of 2-D ar	rays		
6	Procedure, Program, Activity, Algorithm, Pseudo Code	Step Step Step Step Step Step	3: [validate] if matrix A print matr 4: read the e 5: read the e	column not	equal to mati ion is not pos Matrix A Matrix B		
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph Observation Table,		·	of matrix a			

Logo	INST	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03	Date: 25-03-2019
	Title:	Course Lab Manual	Page: 21 / 26

Copyright ©2017. cAAS. All rights reserved. Table, Look-up enter the size of matrix b Output enter the elements of matrix a 1 3 the matrix a is 1 3 enter the elements of matrix b 4 3 2 the matrix b is 2 1 The resultant matrix c is 8 5 20 13 2. enter the size of matrix a enter the size of matrix b Multiplication is not possible 9 Sample Calculations 10 Graphs, Outputs 11 Results & Analysis 12 Application Areas Computer Graphics 13 Remarks Signature 14 Faculty with Date

Experiment 09: Develop a Program to compute Sin(x) using Taylor series approximation.

-	Experiment No.:	9	Marks		Date Planned		Date Conducted	
1	Title	Com	lop a Progi pare your res opriate mess	sult with the I	pute Sin(x)		or series ap	proximation. e results with
2	Course Outcomes	Deve	lop a C code	using Repet	itive stateme	ents		
3	Aim	To c	•	x) using Tay	/lor series a	nd compare	e with buil	t- in Library
4	Material / Equipment Required	Lab N	Manual					
5	Theory, Formula Principle, Concept	,Modi	ular Represei	ntation				
	Procedure, Program, Activity Algorithm, Pseudo Code	Step Step Step Step		umber of ter sin(x) value	ms more tha	n three		
7	Block, Circuit Model Diagram		·					

CS

Logo	INST	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03	Date: 25-03-2019
	Title:	Course Lab Manual	Page: 22 / 26

Copyright ©2017. cAAS. All rights reserved. Reaction Equation, Expected Graph 8 Observation Table, enter x in degrees, eg: 45,60,90...etc Table,30 Look-up Output enter the no. of terms greater than three 4 sin value is 0.500059 sin value using built-in function is 0.500059 9 Sample Calculations 10 Graphs, Outputs 11 Results & Analysis 12 Application Areas Power flow analysis of electrical power systems 13 Remarks 14 Faculty Signature with Date

Experiment 10: Write functions to implement string operations.

-	Experiment No.:	10	Marks		Date Planned		Date Conducted			
1		string	ite functions to implement string operations such as compare, concatenate, ng length. Convince the parameter passing techniques.							
2	Course Outcomes				manipulatio	n functions				
	Aim			ng operation	IS					
	Equipment Required		1anual							
	Principle, Concept		g operations							
	Program, Activity, Algorithm, Pseudo Code	Step : Step : Step : Step :	4: concatena	wo strings ar	nd print the re is and print th		ated string			
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	·	·							
		enter string lengtl	the second s are not eq h of the strin	string: div ual	, vya					
_	Sample Calculations			_						
	Graphs, Outputs									
	Results & Analysis									
		Datak	ase Manage	ement syster	n					
13	Remarks									

CS

Logo	INST	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03	Date: 25-03-2019
	Title:	Course Lab Manual	Page: 23 / 26
Copyright ©2017. c	AAS. All rights reserved		·
14 Faculty	Signature		
with Da	ŧo		

Experiment 11: Develop a program to sort the given set of N numbers using Bubble sort.

-	Experiment No.:	11	Marks		Date Planned		Date Conducted	
1	Title	Deve	lop a progra	m to sort the	given set of	N numbers	using Bubble	sort.
2	Course Outcomes	Deve	lop a C code	using Array:	5			
3				ımbers in asc	ending orde	r using bub	ble sort techr	nique
	Equipment Required		/anual					
	Principle, Concept		arrangemen	t				
	Program, Activity, Algorithm, Pseudo Code	Step Step Step Step	4: sort the ar		5			
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph							
8		5 Enter 10 45		ts in to the ar		array:		
	Sample Calculations							
	Graphs, Outputs							
	Results & Analysis							
			le sort is use er viewing tir		nming TV rer	note to sor	t channels or	the basis of
	Remarks							
14	Faculty Signature with Date							

Experiment 12: Develop a program to find the square root of a given number N

-	Experiment No.:	12	Marks		Date Planned		Date Conducted	
					Flameu		Conducted	
1			ossible input					l execute for ary function
2	Course Outcomes	Deve	Develop a C code using Repetitive statements					
3	Aim	To fi	nd the squa	re root of a	given numl	oer N witho	ut using libr	ary function

Logo	INST	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03	Date: 25-03-2019
	Title:	Course Lab Manual	Page: 24 / 26

Copyright ©2017. cAAS. All rights reserved. sqrt(n) 4 Material /Lab Manual Equipment Required 5 Theory, Formula, Derived datatype Principle, Concept 6 Procedure. Step 1: start Program, Activity, Step 2: read n Algorithm, PseudoStep 3: compute square root using user defined function Step 4: print the square root of a number Code step 5: stop 7 Block. Circuit, Model Diagram, Reaction Equation, Expected Graph 8 Observation Table, Case 1: enter the no Look-up Table, Output 64 the sqrt is 8.000 Case 2: enter the no 12 the sqrt is 3.464 9 Sample Calculations 10 Graphs, Outputs 11 Results & Analysis 12 Application Areas Mathematical statistics 13 Remarks 14 Faculty Signature with Date

Experiment 13: Implement structures to compute average- marks and the students scoring above and below the average marks for a class of N students.

-	Experiment No.:	13	Marks		Date Planned		Date Conducted	
1	Title				write, compu average mark			
2	Course Outcomes	Deve	lop a C code	using struct	ures			
3	Aim	To in	nplement stri	ucture to con	npute studen	t average m	narks for N st	udents
•	Material / Equipment Required	Lab N	Manual					
l	Theory, Formula Principle, Concept	Deriv	ed datatype					
	Procedure, Program, Activity Algorithm, Pseudo Code	Step Step Step Step	3: read the st 4: compute a	tudent marks average mark	i	ge marks		
,	Block, Circuit Model Diagram Reaction Equation	-	·					

CS

Logo	INST	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03	Date: 25-03-2019
	Title:	Course Lab Manual	Page: 25 / 26

Copyright ©2017. cAAS. All rights reserved. Expected Graph 8 Observation Table, enter the number of students: Look-up Table,2 Output enter the roll number: enter the name: sandya enter the marks in 2 subjects: 100 99 roll no. name sub1 sub2 total average 32 sandya 100 99 100 Above Average enter the roll number: 33 enter the name: vanitha enter the marks in 2 subjects: 100 99 roll no. name sub1 sub2 total average 32 vanitha 100 99 100 Above Average 9 Sample Calculations 10 Graphs, Outputs 11 Results & Analysis 12 Application Areas Computer Architecture 13 Remarks 14 Faculty Signature with Date

Experiment 14: Develop a program using pointers to compute the sum, mean and standard deviation.

-	Experiment No.:	14	Marks		Date Planned		Date Conducted	
1	Title	Develop a program using pointers to compute the sum, mean and standa deviation of all elements stored in an array of n real numbers					nd standard	
2	Course Outcomes	omes Develop a C code using pointers						
3	Aim	To compute sum, mean and standard deviation of all elements stored in an array of n real numbers using pointers						
	Material / Equipment Required	Lab N	Manual					
	Theory, Formula, Principle, Concept	Addr	ess of memo	ory location				
			1: start					
	Program, Activity,							
	Algorithm, Pseudo							
	Code			um, mean an	d standard d	eviation		
		step	5: stop					
1 '	Block, Circuit,	1						
	Model Diagram,	1						
	Reaction Equation,							

CS

Logo	INST	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03	Date: 25-03-2019
	Title:	Course Lab Manual	Page: 26 / 26

Copyright ©2017. cAAS. All rights reserved. Expected Graph 8 Observation Table, enter the max no. of elements an array Look-up Table,5 Output Enter the floating point(like:3.5...etc) elements into array 5.5 6.4 8.8 10.5 the value of sum=33.700001 and mean=6.740000 standard deviation is 3.082694 9 Sample Calculations 10 Graphs, Outputs 11 Results & Analysis 12 Application Areas Memory allocation 13 Remarks 14 Faculty Signature with Date

Experiment 15: Implement Recursive functions for Binary to Decimal Conversion

-	Experiment No.:	15	Marks		Date Planned		Date Conducted	
1	Title	Imple	plement Recursive functions for Binary to Decimal Conversion					
2	Course Outcomes	Deve	velop a C code using recursion					
3	Aim	То сс	convert Binary to Decimal number using recursion					
	Equipment Required		1anual					
	Principle, Concept		invoking fun	ctions				
	Program, Activity, Algorithm, Pseudo Code	Step Step Step	3: convert bi			sive functio	on	
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph							
	Observation Table, Look-up Table, Output							
	Sample Calculations							
10	Graphs, Outputs							
_	Results & Analysis							
		Comp	outer Techno	ology for enc	oding and dec	oding.		
	Remarks							
1 .	Faculty Signature with Date							

Add required experiments

CS